Нейросети для чайников

Дата: 01.09.2016      Просмотров: 4653      Теги:

Сегодня на каждом углу то тут, то там кричат о пользе нейросетей. А вот что это такое, действительно понимают единицы. Если обратиться за объяснениями к Википедии, голова закружится от высоты понастроенных там цитаделей ученых терминов и определений. Если вы далеки от генной инженерии, а путанный сухой язык вузовских учебников вызывает только потерянность и никаких идей, то попробуем разобраться сообща в проблеме нейросетей.

Чтобы разобраться в проблеме, нужно узнать первопричину, которая кроется совсем на поверхности. Вспоминая Сару Коннор, с содроганием сердца понимаем, что некогда пионеры компьютерных разработок Уоррен Мак-Каллок и Уолтер Питтс преследовали корыстную цель создания первого Искусственного Интеллекта.

Нейронные сети – это электронный прототип самостоятельно обучаемой системы. Как и ребенок, нейросеть впитывает в себя информацию, пережевывает её, приобретает опыт и учится. В процессе обучения такая сеть развивается, растет и может делать собственные выводы и самостоятельно принимать решения.

Если мозг человека состоит из нейронов, то условно договоримся, что электронный нейрон – это некая воображаемая коробочка, у которой множество входных отверстий, а выходное – одно. Внутренний алгоритм нейрона определяется порядок обработки и анализа полученной информации и преобразования её в единый полезный ком знаний. В зависимости от того, насколько хорошо работают входы и выходы, вся система или соображает быстро, или, наоборот, может тормозить.

Важно: Как правило, в нейронных сетях используется аналоговая информация.

Повторимся, что входных потоков информации (по-научному эту связь первоначальной информации и наш “нейрон” называют синапсами) может быть множество, и все они носят разных характер и имеют неравную значимость. Например, человек воспринимает окружающий мир через органы зрения, осязания и обоняния. Логично, что зрение первостепеннее обоняния. Исходя из разных жизненных ситуаций мы используем определенные органы чувств: в полной темноте на первый план выходят осязание и слух. Синапсы у нейросетей по такой же аналогии в различных ситуациях будут иметь разную значимость, которую принято обозначать весом связи. При написании кода устанавливается минимальный порог прохождения информации. Если вес связи выше заданного значения, то результат проверки нейроном положительный (и равен единице в двоичной системе), если меньше – то отрицательный. Логично, что, чем выше задана планка, тем точнее будет работа нейросети, но тем дольше она будет проходить.

Чтобы нейронная сеть работала корректно, нужно потратить время на её обучение – это и есть главное отличие от простых программируемых алгоритмов. Как и маленькому ребенку, нейросети нужна начальная информационная база, но если написать первоначальный код корректно, то нейросеть уже сама сможет не просто делать верный выбор из имеющейся информации, но и строить самостоятельные предположения.

При написании первичного кода объяснять свои действия нужно буквально по пальцам. Если мы работаем, например, с изображениями, то на первом этапе значение для нас будет иметь её размер и класс. Если первая характеристика подскажет нам количество входов, то вторая поможет самой нейросети разобраться с информацией. В идеале, загрузив первичные данные и сопоставив топологию классов, нейросеть далее уже сама сможет классифицировать новую информацию. Допустим, мы решили загрузить изображение 3х5 пикселей. Простая арифметика нам подскажет, что входов будет: 3*5=15. А сама классификация определит общее количество выходов, т.е. нейронов. Другой пример: нейросети необходимо распознать букву “С”. Заданный порог – полное соответствие букве, для этого потребуется один нейрон с количеством входов, равных размеру изображения.

Допустим, что размер будет тот же 3х5 пикселей. Скармливая программе различные картинки букв или цифр, будем учить её определять изображение нужного нам символа.

Как и в любом обучении, ученика за неправильный ответ нужно наказывать, а за верный мы ничего давать не будем. Если верный ответ программа воспринимает как False, то увеличиваем вес входа на каждом синапсе. Если же, наоборот, при неверном результате программа считает результат положительным или True, то вычитаем вес из каждого входа в нейрон. Начать обучение логичнее со знакомства с нужным нам символом. Первый результат будет неверным, однако немного подкорректировав код, при дальнейшей работе программа будет работать корректно. Приведенный пример алгоритма построения кода для нейронной сети называется парцетроном.

Бывают и более сложные варианты работы нейросетей с возвратом неверных данных, их анализом и логическими выводами самой сети. Например, онлайн-предсказатель будущего вполне себе запрограммированная нейросеть. Такие проги способны обучаться как с учителем, так и без него, и носят название адаптивного резонанса. Их суть заключается в том, что у нейронов уже есть свои представления об ожидании о том, какую именно информацию они хотят получить и в каком виде. Между ожиданием и реальностью проходит тонкий порог так называемой бдительности нейронов, которая и помогает сети правильно классифицировать поступающую информацию и не упускать ни пикселя. Фишка АР нейросети в том, что учится она самостоятельно с самого начала, самостоятельно определяет порог бдительности нейронов. Что, в свою очередь, играет роль при классифицировании информации: чем бдительнее сеть, тем она дотошнее.

Самые азы знаний о том, что такое нейросети, мы получили. Теперь попробуем обобщить полученную информацию. Итак, нейросети – это электронный прототип мышлению человека. Они состоят из электронных нейронов и синапсов – потоков информации на входе и выходе из нейрона. Программируются нейросети по принципу обучения с учителем (программистом, который закачивает первичную информацию) или же самостоятельно (основываясь на предположения и ожидания от полученную информацию, которую определяет всё тот же программист). С помощью нейросети можно создать любую систему: от простого определения рисунка на пиксельных изображениях до психодиагностики и экономической аналитики.









Если вас не заметили, вы остаетесь ни с чем. Вам нужно чтобы вас заметили, но без криков и обмана.

Если вас не заметили, вы остаетесь ни с чем. Вам нужно чтобы вас заметили, но без криков и обмана.

Лео Бернетт



Стоит посетить

25.09.2015Wearable Tech
Wearable Tech

Реклама на сайте: приобретается здесь.




#Интернавт